295 research outputs found

    Collective Decision Dynamics in the Presence of External Drivers

    Get PDF
    We develop a sequence of models describing information transmission and decision dynamics for a network of individual agents subject to multiple sources of influence. Our general framework is set in the context of an impending natural disaster, where individuals, represented by nodes on the network, must decide whether or not to evacuate. Sources of influence include a one-to-many externally driven global broadcast as well as pairwise interactions, across links in the network, in which agents transmit either continuous opinions or binary actions. We consider both uniform and variable threshold rules on the individual opinion as baseline models for decision-making. Our results indicate that 1) social networks lead to clustering and cohesive action among individuals, 2) binary information introduces high temporal variability and stagnation, and 3) information transmission over the network can either facilitate or hinder action adoption, depending on the influence of the global broadcast relative to the social network. Our framework highlights the essential role of local interactions between agents in predicting collective behavior of the population as a whole.Comment: 14 pages, 7 figure

    The JCMT Gould Belt Survey: Evidence for radiative heating in Serpens MWC 297 and its influence on local star formation

    Get PDF
    We present SCUBA-2 450micron and 850micron observations of the Serpens MWC 297 region, part of the JCMT Gould Belt Survey of nearby star-forming regions. Simulations suggest that radiative feedback influences the star-formation process and we investigate observational evidence for this by constructing temperature maps. Maps are derived from the ratio of SCUBA-2 fluxes and a two component model of the JCMT beam for a fixed dust opacity spectral index of beta = 1.8. Within 40 of the B1.5Ve Herbig star MWC 297, the submillimetre fluxes are contaminated by free-free emission with a spectral index of 1.03+-0.02, consistent with an ultra-compact HII region and polar winds/jets. Contamination accounts for 73+-5 per cent and 82+-4 per cent of peak flux at 450micron and 850micron respectively. The residual thermal disk of the star is almost undetectable at these wavelengths. Young Stellar Objects are confirmed where SCUBA-2 850micron clumps identified by the fellwalker algorithm coincide with Spitzer Gould Belt Survey detections. We identify 23 objects and use Tbol to classify nine YSOs with masses 0.09 to 5.1 Msun. We find two Class 0, one Class 0/I, three Class I and three Class II sources. The mean temperature is 15+-2K for the nine YSOs and 32+-4K for the 14 starless clumps. We observe a starless clump with an abnormally high mean temperature of 46+-2K and conclude that it is radiatively heated by the star MWC 297. Jeans stability provides evidence that radiative heating by the star MWC 297 may be suppressing clump collapse.Comment: 24 pages, 13 figures, 7 table

    The JCMT Gould Belt Survey: A First Look at the Auriga–California Molecular Cloud with SCUBA-2

    Get PDF
    We present 850 and 450 μm observations of the dense regions within the Auriga–California molecular cloud using SCUBA-2 as part of the JCMT Gould Belt Legacy Survey to identify candidate protostellar objects, measure the masses of their circumstellar material (disk and envelope), and compare the star formation to that in the Orion A molecular cloud. We identify 59 candidate protostars based on the presence of compact submillimeter emission, complementing these observations with existing Herschel/SPIRE maps. Of our candidate protostars, 24 are associated with young stellar objects (YSOs) in the Spitzer and Herschel/PACS catalogs of 166 and 60 YSOs, respectively (177 unique), confirming their protostellar nature. The remaining 35 candidate protostars are in regions, particularly around LkHα 101, where the background cloud emission is too bright to verify or rule out the presence of the compact 70 μm emission that is expected for a protostellar source. We keep these candidate protostars in our sample but note that they may indeed be prestellar in nature. Our observations are sensitive to the high end of the mass distribution in Auriga–Cal. We find that the disparity between the richness of infrared star-forming objects in Orion A and the sparsity in Auriga–Cal extends to the submillimeter, suggesting that the relative star formation rates have not varied over the Class II lifetime and that Auriga–Cal will maintain a lower star formation efficiency

    The JCMT Gould Belt Survey: constraints on prestellar core properties in Orion A North

    Get PDF
    We employ SCUBA-2 (Submillimetre Common-User Bolometer Array 2) observations of the Orion A North molecular cloud to derive column density and temperature maps. We apply a novel, Hessian-based structural identification algorithm for detection of prestellar cores to these data, allowing for automated generation of the prestellar mass function. The resulting mass function is observed to peak at 1.39−0.19+0.18M⊙1.39^{+0.18}_{{-}0.19} M_{\odot}, indicating a star-forming efficiency lower limit of ∼14 per cent when compared with the Orion nebula Cluster initial mass function (IMF) peak. Additionally, the prestellar mass function is observed to decay with a high-mass powerlaw exponent α=2.53−0.14+0.16\alpha = 2.53^{+0.16}_{{-}0.14}, indicating approximate functional similarity with the Salpeter IMF (α=2.35\alpha = 2.35). This result, when combined with the results of previous investigations suggests a regional dependence of the star-forming efficiency

    The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-Forming Region

    Get PDF
    This is the final version. Available from American Astronomical Society / IOP Publishing via the DOI in this record.We present the POL-2 850 um linear polarization map of the Barnard 1 clump in the Perseus molecular cloud complex from the B-fields In STar-forming Region Observations (BISTRO) survey at the James Clerk Maxwell Telescope. We find a trend of decreasing polarization fraction as a function of total intensity, which we link to depolarization effects towards higher density regions of the cloud. We then use the polarization data at 850 um to infer the plane-of-sky orientation of the large-scale magnetic field in Barnard 1. This magnetic field runs North-South across most of the cloud, with the exception of B1-c where it turns more East-West. From the dispersion of polarization angles, we calculate a turbulence correlation length of 5.0 +/- 2.5 arcsec (1500 au), and a turbulent-to-total magnetic energy ratio of 0.5 +/- 0.3 inside the cloud. We combine this turbulent-to-total magnetic energy ratio with observations of NH3 molecular lines from the Green Bank Ammonia Survey (GAS) to estimate the strength of the plane-of-sky component of the magnetic field through the Davis-Chandrasekhar-Fermi method. With a plane-of-sky amplitude of 120 +/- 60 uG and a criticality criterion lambda_c = 3.0 +/- 1.5, we find that Barnard 1 is a supercritical molecular cloud with a magnetic field nearly dominated by its turbulent component.National Research Foundation of Korea (NRF)National Key R&D Program of ChinaNational Natural Science Foundation of China (NSFC

    The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population

    Get PDF
    In this paper, we present the first observations of the Ophiuchus molecular cloud performed as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey (GBS) with the SCUBA-2 instrument. We demonstrate methods for combining these data with previous HARP CO, Herschel, and IRAM N2H+ observations in order to accurately quantify the properties of the SCUBA-2 sources in Ophiuchus. We produce a catalogue of all of the sources found by SCUBA-2. We separate these into protostars and starless cores. We list all of the starless cores and perform a full virial analysis, including external pressure. This is the first time that external pressure has been included in this level of detail. We find that the majority of our cores are either bound or virialized. Gravitational energy and external pressure are on average of a similar order of magnitude, but with some variation from region to region. We find that cores in the Oph A region are gravitationally bound prestellar cores, while cores in the Oph C and E regions are pressure-confined. We determine that N2H+ is a good tracer of the bound material of prestellar cores, although we find some evidence for N2H+ freeze-out at the very highest core densities. We find that non-thermal linewidths decrease substantially between the gas traced by C18O and that traced by N2H+, indicating the dissipation of turbulence at higher densities. We find that the critical Bonnor-Ebert stability criterion is not a good indicator of the boundedness of our cores. We detect the pre-brown dwarf candidate Oph B-11 and find a flux density and mass consistent with previous work. We discuss regional variations in the nature of the cores and find further support for our previous hypothesis of a global evolutionary gradient across the cloud from south-west to north-east, indicating sequential star formation across the regio

    The Alchemist

    Get PDF
    JOURThis is the final version of the article. It was first published by IOP Publishing for the Royal Astronomical Society via http://dx.doi.org/10.3847/0004-637X/817/2/167We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 μm map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 μm peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1–2 × 1023 cm‑2, most of the mass is found within dense cores, while at lower cloud column densities, below 1 × 1023 cm‑2, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023/2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars
    • …
    corecore